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A proposal is made to measure the "efficiency" of cellular algorithms, imple- 
mented in cellular automata, roughly speaking by the ratio of the number of 
proper state changes and the product of time, and number of single automata. 
Such a definition is discussed in some detail. For some cellular algorithms lower 
bounds for their efficiency are given. 

I N T R O D U C T I O N  

Probably pattern recognition will become one of the most important 
tasks array processors will be used for. Formal languages may be under- 
stood as patterns and cellular automata may serve as models for array 
processors. 

Then it seems interesting to have a measure for the effort cellular 
automata have to spend recognizing different pattern classes. Also it would 
be useful to know, e.g., the needed energy. 

Here a proposal is made to consider the number of proper state 
changes as a complexity measure and to define the efficiency of cellular 
automata as the ratio of the sum of such changes and the possible number 
of changes. 

N O T A T I O N S  AND DEFINITIONS 

The starting point is a one-dimensional bounded cellular space [in the 
notation of Smith (1970)] or [in the sense of Vollmar (1979)] a one-dimen- 
sional cellular automaton (ca). 

It is a chain of identical finite, deterministic automata where each 
automaton is connected with its two immediate neighboring automata. A 
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(deterministic) global transition function describes the global behavior of 
the ca in one transition step. 

To use ca as language recognizers some conventions are needed: Let 
L C_ X + be a formal language. (In the following the empty word will be 
excluded.) A word wE X + for which is to recognize whether wE L or not, is 
coded (one symbol per automaton) within a simple-connected region of 
single automata, called retina. The retina is bounded by two so-called 
border automata which do not change their (special) states. The first 
automaton of the retina, called accepting automaton, shows by assuming 
special states (a  and ~0) the result of the recognition process (wE L, or, 
respectively, w ~ L). 

Such a ca is called a ca recognizer (for the language L). The covering of 
the retina and of the border automata with states at time t = 0 is denoted c~', 
the initial configuration attached to w. c~' does not contain a and ~o. Starting 
with c~' by repeated application of the global transition function a sequence 
of configurations c~,c~( . . . . .  the so-called propagation (c~') is generated. 
The deterministic transition behavior of the ca implies for a given c~' the 
existence of a unique propagation. 

It is known that for the recognition process only a finite section 
(depending on the length of w) of the propagation is necessary. The 
"subpropagation" consisting of the first / + 1  elements of (c~') is called l 
propagation and denoted (c~')[t. 

Two measures are considered: 
(1) maxc(c~'): maximum of the number of proper state changes over the 

automata in the retina during the recognition process 
(2) sumc(c~'): sum of the number of proper state changes of automata in 

the retina during the recognition process 
Proper state changes are motivated among others by physical reasons: 

The energy to change the state of CMOS-chips is much higher than that of 
holding the state. 

To formalize the measures some further notations have to be intro- 
duced: 

In the following it is assumed that for a given word w = wl... w n with 
n 1> 1, the symbol w i (1 ~< i ~< n) is coded to the state of the automaton with 
coordinate i - -ca l led  automaton i for short. 

The current state of the automaton i at time t is denoted ct( i  ). 
In the sequel so-called real-time ca recognizers will be considered: If 

for no input word of length n a ca recognizer ~ for a language L needs more 
than n transition steps before accepting or rejecting the word, 6g is said to be 
a real-time ca recognizer for L. 

Definition 1. Let d~ be a ca, wE X +, c~' the initial configuration at- 
tached to w. 
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(a) The number  of proper  state changes (or simply changes) of an 
au tomaton  i (1 <~i<~lw I) ~ before the moment  l is defined by 2 

st(i):= ]{t/ct(i ) 4 = c~'+ i ( i ) A  t < l)1 

(b) The  maximal number  of changes for the ! propagat ion (c~')] t is 
defined by 

m a x c ( ( c ~ ) l t ) : - -  max ( s t ( i )}  

(c) The  sum of changes for the l propagat ion <c;)lt is defined by 

Iwl 
s u m c ( ( c ~ ' ) i t ) : =  ~] st(i) 

i=1 

Analogous definitions are used for propagations.  

Definition 2. Let  ~ be a ca recognizer for L C_ X + , f :  ~ ~ ~ 3 a function, 
W w, c o as above. 
(a) A propagat ion (c~') is called f -max-(sum-)change-bounded if the 

following holds: 

maxc((c~))<~ f(lw[), or, respectively, sumc((c~))<~ f([w[) 

(b) ~ is called f -max-(sum-)change-bounded if it holds that 

V w E  X + : (c~') i s f -max-(sum-)change-bounded 

The main tool to prove the results will be modified crossing sequences 
[following Hennie  (1965)]. In this connect ion the used ca has to be fixed: 
In the sequel ca ~ = ( A ,  1, H I, F )  ~ be considered. A denotes the state set 
of the single au tomata  the ca is composed of, the dimension is 1, H I denotes 
the so-called von Neumann  neighborhood which is characterized by the 
direct connect ion of the two immediately neighboring automata  to each 
automaton,  and F stands for the global transition function. 

Definition 3. (a) The  "spat ia l"  restriction of an I propagat ion {c~')[ I 
containing two neighboring automata  i, i + 1 with 1 ~< i ~< I w l is denoted 
(c'~(i, i+ 1))It  and called /-propagation section. If the restriction to one 

l I w t denotes the length of word w. 
21 M] denotes the cardhaality of M. From the context the meaning of I " "  I will become clear. 
3N denotes the set of natural numbers (without zero). 



I010 Vollmar 

automaton i, 1 ~< i <~[w I, is considered, the notation/-propagation 1-section 
(c~'(i))l/is used. 

(b) Two /-propagation sections (c~(i, i + 1))l ~ and (c'~(j, j + l ) ) l  ~ are 
called equal if the following holds: 

VtE {0, 1,.. . ,1}: [c;'(i)= c~'(j) A cT'(i + 1)= ct( j + 1)] 

RESULTS 

In this section some results will be cited (and proved in part) which 
should make clear that there are some reasons to consider the proposed 
measure coincident with some intuitive ideas about "parallelism inherent in 
problems." 

As a first approach for the definition of efficiency of ca the ratio of the 
number of changes of the "busiest" automaton and the time needed to 
recognize a language will be discussed. But it is clear that of greater interest 
will be the total amount of load of the ca. At a first thought one would 
conjecture that there is no great difference between the results of such 
measurements, i.e., that the max-change number and the appropriately 
adapted sum-change number are equal (at least at the order of magnitude) 
- - i n  analogy to a result of Hennie (1965) for Turing machines. But the 
following holds: 

Proposition 1. The class of languages recognizable by f-max-change- 
bounded real-time ca recognizers with f(  [ w] ) = k, k E N fixed, is properly 
included in the class of languages recognizable by O([w [)-sum-change- 
bounded real-time ca recognizers. 4 

The proposition which will not be proved here states that real-time ca 
recognizers which need a constant number of proper state changes in the 
mean are properly more powerful than real-time ca recognizers with a 
constant number of changes per single automaton. Therefore it seems 
meaningful to define the efficiency of a ca recognizer d~ recognizing words 
w ~  X + as 

r l ( ~ ,  w): = sumc((c~)[ ,(,~))" (1 wl" t(w))-' 

where t: X + --, N gives the time needed for the recognition of words. 
For n E N we define 

I I ( A , n ) : =  max U(t~ ,w)  
we x+Ai wl = n 

4f= O(g) means that there exists a kEN, such that almost everywhere f~< kg holds. 
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The maximum is chosen to take into consideration, e.g., the maximal needed 
energy during the recognition of words of length n. It should be mentioned 
that- - in  analogy to definitions for Turing machines--complexity is (im- 
plicitly) defined for algorithms, i.e., for ca recognizers, and not for lan- 
guages. 

For II defined in this way the following holds: 

n- l  ~< r I (~ ,  n)~< 1 

By definition the second inequality is clear and the first one follows 
immediately by the fact that before the end of the recognition process at 
each moment at least one automaton must change its state; otherwise by the 
deterministic behavior a stable configuration is reached. 

From proposition 1 of Vollmar (1981) it follows immediately that the 
regular languages (without theempty  word) are recognizable by I wl-sum- 
change-bounded real-time ca recognizers. From the same proposition it is 
derivable that the languages {akXak /kEN}  and (akXbkyck /kEN}  are 
accepted by O( I w I)-sum-change-bounded real-time ca recognizers. This im- 
plies the following: 

Proposition 2. (a) To any regular language L (without the empty word) 
there exist real-time ca recognizers ~ for L with I I (~ ,  n) = n- i .  

(b) There exists a language L E EzXE3 for which a real-time ca recog- 
nizer 6g exists with FI(~, n ) =  O(n-I). 

(c) There exists a language L E  El\E2 for which a real-time ca recog- 
nizer ~ exists with I I (~ ,  n ) =  O(n-1). 

This means that for these examples the capabilities of ca have only been 
used in a very restricted manner- -and this coincides with the intuition that 
for such "simple" languages parallel working automata are "too powerful." 

But there exist examples of problems which can be solved by ca only 
with great effort. First it is shown that there are languages which can only 
be recognized with an efficiency "close to" 1, and then the firing squad 
synchronization problem (fssp) is discussed which can only be solved with 
an efficiency in the order of n -  1 In n. 

Two lemmas are needed: 

Lemma 1. Let ~ = (A, 1, H 1, F) be a real-time ca recognizer for a 
language L C_ X +, w~ X + with Iwl = n. Let r: N ~ IN be a function 
such that for almost all n it holds that r(n)<-n. Then the num- 
ber of different n-propagation sections @~(i, i + 1))1,, 1 ~< i ~< n, 
with < r(n) changes is bounded by 

[IAl.(n + 1)] er(n) 
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Proof. To estimate the number of different n-propagation 1-sections 
(c~'(i)) I., where 1 ~< i <~ n, vectors of n + 1 components are considered, 
where at r(n)  places elements of A are contained; the other components are 
filled by the respectively following and at the end by the respectively 
preceding element. The n-propagation 1-sections (c~'(i))l,, with < r ( n )  
changes are contained in this set of vectors. The number of elements in this 
set is ~<t,,+n~l,~lr(,) which is ~<([A[.(n + 1 ) )  r(n). From this the assertion ~,r(n) l l ' ' l  , 
follows. �9 

Lemma 2. Let ~ = (A,  1, H I, F )  be a real-time ca recognizer for 
L:=(urYuR/u~(a,b)+}. Let w, ~ E L  with I w l = l ~ l = n ,  and let 
c~', c~' be the initial configurations attached to w, ~, respectively. 
For w = w,w 2 and ~ = ~,w2 with [w I I - I ~ l  I= j ,  where 1 <~ j < n,/2 
- 1  holds: If @~(j, j 4-1))[~ and @~(j,  j 4-1))l~ are equal, then 

WI ~ WI" 

Proof. A transition of each automaton is done in dependence on the 
state of this automaton and of the states of the two immediate neighbors. If 
d~ works with the initial configuration attached to w ~  2, then at each 
moment the state of the automaton j and the states of its two neighbors 
have not changed with respect to the initial configuration attached to ww2 
(since by assumption the n-propagation sections (c~'(j, j +  1))[~ and 
(C~o(j, j + 1))[ n are equal). Therefore ~ also accepts wl~ 2. According to the 
construction of L then it must hold that w I = ~l. �9 

Proposition 3. Let ~ ( n ) =  o (n2 - ' )  5 with an arbitrary, but fixed c > 0. 
Then there does not exist a q,(n)-sum-change-bounded real-time ca recog- 
nizer ~ = (A, 1, H I , F )  for L: = { u YYu R/u E (a, b } + }, or, respectively, for 
L': = ( u Y Y u / u  E (a, b} + ). 

Proof. The assertion will be proved for the language L; but with the 
same words the proof for L '  can be given. The proof will follow the 
following plan: First the number of elements from L of length n is 

determined for which an acceptance can be done with less than [kn 1-'] 
changes in two automata. Then the number of corresponding words is 
counted which can be accepted in such a way that at least two automata 
from the region [ n / a ] , . . . , n / 2 - 1  have less than [kn I - ' ]  changes. Finally 
it is shown that the ratio of this number and the number of all words of L 
tends to 0 for n ~ oo. In the following let c and k be arbitrary, but fixed 
numbers with c > 0  and 0 < k < l  and let w ~ ( ( a , b ) U ( Y ) )  + with [wl--n. 
From Lemma 1 the number of different n-propagation sections (c~(i, i + 
1))l. is ~<(IA[ .(n + 1)) 2[k"'-']. From Lemma 2 words from L with the same 

5f_-- o(g) means that limn_oof(n)/g(n)-=O. 
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n-propagation section (c~'(i, i + 1))[ , ,  where i < n / 2 -  1, must possess the 
same initial subword of length i. There are in L 2 " /2 -  i - i  different words 
which have the same subword of length i. Therefore the number of words 
from L with < [kn I-'] changes by each of the automata i and i + 1 is 

~ 2 " / 2 - ' - ' ( I A I  �9 (n + 1)) ~ rk . ' - ,1  

This implies that there exist 

rn /412 . /2 - , -  1./41. (IAI. (n + 1)) 2 r,<.'-q 

different words in L of length n which are accepted by at least two automata 
1 c at the positions I n / n ]  . . . . .  n/2--1 with < [kn - ]  changes. (If all automata 

in this region would need more than [kn I-'] changes, then the assertion 
would also be true.) But the number of words in L of length n equals 
2 , / 2 - i .  The sequence 

[n/412r"/41. [IAI �9 (n + 1)] 2 '1 .2 i - , /2  

tends to 0 for n ~ oo. From this follows the assertion. 

Remark. The proof follows the lines of a proof of Trachtenbrot (1977) 
with which it is shown that a Turing machine for recognition of palindromes 
needs time O(n2). The essential difference lies in the modification of 
crossing sequences. 

Corollary. For a real-time ca recognizer @ for L (L ' )  there holds 

n(~, n)>O(n-') 

The two languages L and L'  also have the same complexity from the point 
of property specification as Salomaa (1973) states about slightly different 
languages. 

Incidentially it is derivable from the result stated above that a pattern 
transformation problem, namely, the reflection of an arbitrary word, can 
only be done in ca with a number of changes "close to" n 2, too. 

Defining II(@, n) for ca in an obvious analogy to the one for ca 
recognizers, a lower bound for the number of proper state changes for the 
solution of the fssp is derived. 

Solutions of this and of modified problems may be widely used not 
only as universal methods for the synchronization of nets of automata but 
also in connection with problems of the recognition of formal languages and 
of pattern transformation. 
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It is well known that the minimal time to solve the "classical" fssp, i.e., 
the one for a one-dimensional ca of n automata with H I neighborhood and 
the general at one end, is 2n - 2 .  

Proposition 4. Let ~ be a ca which solves the fssp in minimal time. The 
number of proper state changes for ~ is at least O(nlnn). 

Proof From the assumptions for the fssp it is clear that the transition 
from the moment 2 n - 3  to 2n - 2  must change the states of all automata. 
Since a deterministic behavior is assumed, to reach this at the preceding step 
at least one automaton in the H~-neighborhood must have changed its state. 
This implies that then at least I n / 3 ]  changes have happened. During k 
steps each automaton may be influenced by I Hkl=2k + 1 automata. There- 
fore at the moment 2n - 2 -  k in the Hk-neighborhood of each automaton at 
least one state change must have occurred, i.e., at this moment at least 
/ n . ( 2 k  + 1)-l/changes must have taken place. Therefore the number of 
changes is greater than 

2n- -3  [ 'n/21 

k=O k = [  

~>(n/2)(3 + I n [ n / 2 ] )  

Remark. The proof follows a communication of Sch6nhage (1980). 

Corollary. For a ca ~ which solves the fssp in minimal time there 
holds 

O(n-'.ln,,) 

It can be shown that the sum of changes is not altered (in the order of 
magnitude) for solutions of the fssp which need a longer time. Seutter (1981) 
has shown that the minimal time solution of Waksman (1966) has a sum of 
O(n 2) changes, and one of the solutions of Balzer (1967) which needs <3n  
steps has a sum of O(n.log n) changes. 

CONCLUSION 

It is hoped that II  reflects the parallelism inherent in problems and that 
it is therefore reasonable to use l I  to select from a collection of tasks those 
to be processed by array processors. 
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